Hot-wire chemical vapor deposition of high hydrogen content silicon nitride for solar cell passivation and anti-reflection coating applications

نویسندگان

  • J. K. Holt
  • Harry A. Atwater
چکیده

The stoichiometry and hydrogen content of hot-wire (HW)-grown silicon nitride was examined as a function of SiH yNH 4 3 flow ratio. The effect of post-deposition hydrogenation treatment on overall film hydrogen content was determined. The hydrogen release properties in Si-rich and N-rich nitride layers were characterized by annealing treatments. Defect hydrogenation was studied using Fourier transform infrared spectroscopy on platinum-diffused silicon substrates. HW nitride layers were deposited onto diffused emitter String Ribbon silicon substrates, producing cells with comparable short circuit current density, open circuit voltage, fill-factor, and efficiency to those fabricated using plasma chemical vapor deposition nitride layers. 2003 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Communication Silicon nitride anti-reflection coatings for CdS/CuInSe2 thin film solar cells by electron beam assisted chemical vapor deposition

The electron beam assisted chemical vapor deposit ion of silicon nitride anti-reflection coatings onto thin film CdS/CuInSe2 solar cells and the resultant effects on their performance are reported. In some cases large increases in the short circuit current, open circuit voltage and fill factor were observed. The present results are explained by the usual index matching anti-reflection mechanism...

متن کامل

Hot-Wire Chemical Vapor Deposition of Silicon and Silicon Nitride for Photovoltaics: Experiments, Simulations, and Applications

Hot-wire chemical vapor deposition is a promising technique for deposition of thin amorphous, polycrystalline, and epitaxial silicon films for photovoltaic applications. Fundamental questions remain, however, about the gas-phase and surface-kinetic processes involved. To this end, the nature of the wire decomposition process has been studied in detail by use of mass spectrometry. Atomic silicon...

متن کامل

EFFECTIVE PASSIVATION OF THE LOW RESISTIVITY SILICON SllRFACE BY A RAPID THERMAL OXIDE/PECVD SILICON NITRIDE STACK AND ITS APPLICATION TO PASSIVATED REAR AND BIFACIAL SI SOLAR CELLS

A novel stack passivation scheme, in which plasma silicon nitride (SiN) is stacked on top of a rapid thennal SiO? (RTO) layer, is developed to attain a surface recombination velocity (S) approaching 10 em/s at the L3 O-cm p-typc (l00) silicon surfaee_ Such low S is achieved by the stack cven when the RTO and SiN films "I<ilvldllally yield considerably poorer surface passivation. Critical to ach...

متن کامل

Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks

Two different techniques for the electronic surface passivation of silicon solar cells, the plasma-enhanced chemical vapour deposition of silicon nitride (SiN) and the fabrication of thin thermal silicon oxide/plasma SiN stack structures, are investigated. It is demonstrated that, despite their low thermal budget, both techniques are capable of giving an outstanding surface passivation quality ...

متن کامل

Systems and control challenges in photovoltaic manufacturing processes: A modeling strategy for passivation and antireflection films

A view of contemporary systems and control challenges in PV cell manufacturing is given in this paper, with emphasis on developing a modeling strategy for the optimization of thin-film silicon nitride SiNx:H films used for passivation and anti-reflection coatings in single (sc-) and multicrystalline silicon (mc-Si) solar cells. The overall framework integrates three modeling modules: a remote p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003